## Quantitative Aptitude Quiz for Bank Exams (03 - 02 - 2017)

### Quantitative Aptitude Quiz for Bank Exams Series, Simplifications, Quadratic Equations

Directions (1 - 5): What will come in place of question mark (?) in the following questions?
1. 17/1276 x 326656 + ? = 9938
a) 5586
b) 4352
c) 5685
d) 4532
e) None of these
2.42% of 445 + ?% of 354 = 289.56
a) 25
b) 27
c) 29
d) 31
e) None of these
3. (9.979)^3 - (23.99)^2 + (1.99)^5 = ?
a) 350
b) 490
c) 390
d) 420
e) 450
4. (18/4)^2 * (455/19) / 61/799 = ?
a) 6320
b) 6350
c) 6400
d) 6430
e) 6490
5. 4. 150% of 950/25 - 43 = ?% of 1400/25
a) 25
b) 55
c) 15
d) 20
e) 35
Directions (6 -10) : In each of these questions a number series is given. In each series only one number is wrong. Find out the wrong number.
6.729    1331    2497    3375    4913
a) 729
b) 1331
c) 3375
d) 2497
e) 4913
7. 8    8.5    11.5    14    17
a) 8
b) 8.5
c) 11.5
d) 14
e) 17
8. 1   2   6   46   1806   3263442
a) 6
b) 46
c) 1806
d) 3263442
e) None of these
9. 199   176   195   180   190   184   187
a) 180
b) 190
c) 184
d) 187
e) 199
10. 1   5   2   30   28   2620
a) 5
b) 2620
c) 28
d) 30
e) 2
11. For which of the following equations the value of X is less than or equal to Y (X≤ Y)
I. X2– 4X + 3= 0; Y2 – 8Y + 15 = 0
II. 3X2 – 19X + 28= 0; 4Y2 – 29Y + 45 = 0
III. x2 – (16)2 = (23)2 – 56; y1/3 – 55 + 376 = (18)2
a) Only I
b) Only II
c) Both I and III
d) Both II and III
e) All follow
12. For which of the following equations the value of X is greater than Y(X>Y)
I. 3X2+23X + 44 = 0; 3Y2 + 20Y +33 = 0
II. 3X2+29 X +56 = 0; 2Y+ 15Y + 25 = 0
III. 3X2– 16X + 21 = 0; 3Y2 – 28Y + 65 = 0
a) Only I
b) Only II
c) Both I and III
d) Both II and III
e) None follow
Directions (13 - 15): In the following questions, two equations numbered I and II are given. You have to solve both the equations and mark the appropriate answer.
a) X > Y
b) X < Y
c) X ≥ Y
d) X ≤ Y
e) X = Y or relation cannot be established
13. 2x² – 3x – 20 = 0
2y² – 18y + 40 = 0
14. I. 2x^2-11x+12=0
II. 2y^2-19y+44=0
15. I. 2x^2+21x+10=0
II. 3y^2+13y+14=0
1. A)
2. C)
3. E)
4. A)
5. A)
6. D)
The series is 9^3, 11^3, 13^3, 15^3,17^3..
Hence, there should be 2197 in place of  2497
7. B)
The series is 8 + 1.5 = 9.5, 9.5 + 2 = 11.5, 11.5+2.5 = 14, 14 + 3 = 17
Hence, there should be 9.5 in place of 8.5
8. E) The series is: 1 * 1 + 1 = 2, 2 * 2 + 2 = 6, 6 * 6 + 6 = 42, 42 * 42 + 42 = 1806,
1806 * 1806 + 1806 = 3263442.
9. B) The series is, -23, +19, -15, +11, -7, +3, ....
10. C) The series is, *1^2 + 4, *2 - 8, *3^2+12, *4-16, ....
11. C) From I, (x-3)(x-1) = 0 X=1,3
(y-5)(y-3) = 0 Y = 5,3
From III, x2 – (16)2 = (23)2 – 56
x2 = 729
x = ± 27
y1/3 – 55 + 376 = (18)2
y = 33 = 27
12. E) From I, X = -4, -11/3; Y = -3, -11/3
From II, X=-7, -8/3; Y = -5, -5/2
From III,X= 3,7/3; Y = 5,13/3
13. D) 2x² – 3x – 20 = 0
x = – 2.5, 4
y² + 9y + 18 = 0
y = 4, 5
14. B) I. 2x^2-11x+12=0
2x^2-8x-3x+12=0
2x(x-4)-3(x-4)=0
(2x-3)(x-4)=0
x=4 or 3/2
II. 2y^2-19y+44=0
2y^2-8y-11y+44=0
2y(y-4)-11(y-4)=0
(y-4)(2y-11)=0
y = 4 or 11/2
Hence, x ≤ y
15. E) I. 2x^2+21x+10=0
2x^2+20x+x+10=0
2x(x+10)+1(x+10)=0
(2x+1)(x+10)=0
x=(-1)/2 or -10
II. 3y^2+13y+14=0
3y^2+6y+7y+14=0
3y(y+2)+7(y+2)=0
(3y+7)(y+2)=0
y=-2 or y=(-7)/3
Hence, relationship between x and y cannot be established