__Quantitative Aptitude Practice Questions for IBPS Clerk – Set 13__**Directions (1 – 5): What should come in place of question mark (?) in the following number series?**

**1. 180 181 208 333 676 ?**

a) 1676

b) 1019

c) 757

d) 1405

**2. 10, 12, 28, 90, 368, 1840, 11112**

a) 1840

b) 368

c) 90

d) 28

e) None of
these

**3. 668 656 632 584 ? 296**

a) 392

b) 438

c) 488

d) 536

e) None of
these

**4. 6417 5704 4991 4278 3565 2852 ?**

a) 2408

b) 2426

c) 7310

d) 7130

e) 2139

**5. 3 3 12 108 ? 43200**

a) 2700

b) 1728

c) 972

d) 432

e) None of
these

**Directions (6 – 10): In the following questions two equations numbered I and II are given. You have to solve both the equations and –**

a) If x
> y

b) If x ≥ y

c) If x
< y

d) If x ≤ y

e) If x = y
or the relationship can not be established

**Directions (11 – 15): What approximate value will come in place of question mark (?) in the following question? (Note: – You are not expected to calculate the exact value)**

**Solutions:**

**1. D)**∴ The pattern of the given number series is:

⇒ 180,

⇒ 180 + 1

^{3}= 181,
⇒ 181 + 3

^{3}= 208,
⇒ 208 + 5

^{3}= 333,
⇒ 333 + 7

^{3}= 676,
⇒ 676 + 9

^{3}=**1405**
Hence,
the required term of the given number series is 1405

**2. A)**The pattern of the given number series is as:

⇒ 10,

⇒ 10 × 1 + 2 = 12,

⇒ 12 × 2 + 4 = 24 + 4 = 28,

⇒ 28 × 3 + 6 = 84 + 6 = 90,

⇒ 90 × 4 + 8 = 360 + 8 = 368,

⇒ 368 × 5 + 10 = 1840 + 10 =

**1850, (instead of 1840)**
⇒ 1850 × 6 + 12 = 11100 + 12 = 11112,

Hence,
the wrong term of the given number series is 1840. The correct term is 1850

**.****3. C)**The rule followed is

The
difference between the digits has started from 12 and every time changes to
twice its value and so on

i.e.

668
- 656 = 12

656
- 632 = 12 × 2 = 24

632
- 584 = 24 × 2 = 48

584
- ? = 48 × 2 =96

?
- 296 = 96 × 2 = 192

Solving
for ? by both the equations

?
= 488

**4. E)**We have each term of this series as follows:

⇒ 6417 = 713
× 9

⇒ 5704 = 713
× 8

⇒ 4991 = 713
× 7

⇒ 4278 = 713
× 6

⇒ 3565 = 713
× 5

⇒ 2852 = 713
× 4

⇒ ? = 713 × 3

⇒ ? = 2139

**5. B)**We have each term of this series as follows:

⇒ 3 = 3 × 1

^{2}
⇒ 12 = 3 × 2

^{2}
⇒ 108 = 12 × 3

^{2}
⇒ ? = 108 × 4

^{2}
⇒ ? = 108 × 16

⇒ ? = 1728

**6. C)**x = -70; y = 122. Therefore x < y

**7. A)**x = 3, 4 and y = -4, -8. Therefore x > y

**8. B)**x = ±3 and y = -3. Therefore x ≥ y

**9. A)**x = -32, -6 and y = 13, 5. Therefore x < y

**10. E)**x = ±6; y = ±4. ∴ Relationship cannot be determined

**11. A) 12. C) 13. D) 14. B) 15. E)**