__Quantitative Aptitude Number Series Practice Questions – Set 14__**Directions (1 – 2): Find the wrong term in the following number series?**

**1. 10, 14, 28, 32, 64, 68, 132**

a) 28

b) 32

c) 64

d) 132

**2. 10 15 24 35 54 75 100**

a) 75

b) 35

c) 24

d) 15

e) 54

**Directions (3 – 15): What should come in place of question mark (?) in the following question?**

**3. 3 7 14 23 ? 49**

a) 47

b) 36

c) 24

d) 41

e) 44

**4. 123, 126, 124, 127, ?, 128, 126, 129**

a) 127

b) 125

c) 126

d) 128

e) None of these

**5. 41, 328, 5248, ?, 10747904**

a) 102444

b) 5431552

c) 167936

d) 127688

e) None of these

**6. 226, 222, 206, 170, 106, ?**

a) 84

b) 100

c) 78

d) 6

e) 36

**7. 117 389 525 593 627 (?)**

a) 624

b) 644

c) 634

d) 654

e) 664

**8. 3, 23, 43, ?, 83, 103**

a) 33

b) 53

c) 63

d) 73

e) None of these

**9. 4, 19, 49, 94, 154, ?**

a) 223

b) 225

c) 229

d) 239

e) None of these

**10. 10 17 48 165 688 3475 ?**

a) 19892

b) 19982

c) 21892

d) 20892

e) None of these

**11. 7 8 16 43 107 (?)**

a) 186

b) 196

c) 194

d) 232

e) None of these

**12. 4 13 17 ? 30 39**

a) 29

b) 21

c) 26

d) 19

e) None of these

**13. 0, 2, 6, 12, 20, 30, 42, ?**

a) 56

b) 62

c) 49

d) 55

e) 58

**14. 11, 12, 26, 81, ?**

a) 324

b) 328

c) 320

d) 280

e) None of these

**15. 5, 11, 23, 47, ?**

a) 95

b) 93

c) 96

d) 97

e) None of these

**Solutions:**

**1. D)**The pattern of the given number series is as:

→10,

→10 + 4 = 14,

→14 × 2 = 28,

→28 + 4 = 32,

→ 32 × 2 = 64,

→ 64 + 4 = 68

→ 68 × 2 =

**136**, (instead of 132)
Hence, the wrong term of
the given number series is

**132.**The correct term is**136.****2. B)**10 + 5 = 15 (By adding 5)

15 + 9 = 24 (By adding 5
+ 4 =9)

24 + 13 = 37(By adding 9
+ 4 =13)

37 + 17 = 54 (By adding
13 + 4 =17)

54 + 21 = 75 (By adding
17 + 4 =21)

75 + 25 = 100 (By adding
21 + 4 =25)

Hence, the wrong number =
35

**3. B)**The pattern of given series is as –

⇒ 1

^{2}+ 2 = 3
⇒ 2

^{2}+ 3 = 7
⇒ 3

^{2}+ 5 = 14
⇒ 4

^{2}+ 7 = 23
⇒ 5

^{2}+ 11 = 36
⇒ 6

^{2}+ 13 = 49
Hence required term is
36.

**4. B)**We observe that

123 + 3 = 126 and 126 – 2
= 124

124 + 3 = 127

128 – 2 = 126 and 126 + 3
= 129

So, the series is a
pattern of +3, -2, +3, -2

Hence, the next term in
the series is: 127 – 2 = 125

**5. C)**41× 8 = 328

328 × 16 = 5248

5248 × 32 =

**167936****167936**× 64 = 10747904

So, the missing number
is: 167936

**6. D)**The pattern of the given number series is:

⇒ 226 – 2

^{2}= 222
⇒ 222 – 4

^{2 }= 206
⇒ 206 – 6

^{2}= 170
⇒ 170 – 8

^{2}= 106
⇒ 106 – 10

^{2}= 6**7. B)**The pattern of given series is –

389 – 117 = 272

525 – 389 =136

593 – 525 = 68

627 – 593 = 34

? – 627 = 17

⇒ ? = 627 + 17 = 644

**8. C)**Let the missing number be x, then

23 – 3 = 20

43 – 23 = 20

X – 43 = 20 ⇒ x = 63

83 – 63 = 20

103 – 83 = 20

**9. C)**4 + 15 = 19

19 + 30 = 49

49 + 45 = 94

94 + 60 = 154

154 + 75 = 229

**10. D)**17 = 10 × 1 + 7 × 1

48 = 17 × 2 + 7 × 2

165 = 48 × 3 + 7 × 3

688 = 165 × 4 + 7 × 4

3475 = 688 × 5 + 7 × 5

20892 = 3475 × 6 + 7 × 6

**11. D)**The pattern may be evaluated as:

→ 7

→ 7 + 1

^{3}= 8
→ 8 + 2

^{3}= 16
→ 16 + 3

^{3}= 43
→ 43 + 4

^{3}= 107
Hence next number must
be,

→ 107 + 5

^{3 }= 232
∴The required term in the given number series is 232.

**12. C)**The pattern can be analyzed as:

→ 13 – 4 = 9 = 3

^{2}
→ 17 – 13 = 4 = 2

^{2}
Similar pattern is
followed from the end side i.e.

→ 39 – 30 = 9 = 3

^{2}
Hence next number must
be:

→ 30 – 2

^{2}= 26
∴ The required term in the given number series is 26.

**13. A)**Difference between two numbers is in multiplication of 2.

2 – 0 = 2

6 – 2 = 4

12 – 6 = 6

20 – 12 = 8

30 – 20 = 10

42 – 30 = 12

So the next difference
should be 14

⇒Next number = 42 + 14 = 56

**14. B)**The pattern of given series is as follows:

→ 11

→ 11 × 1 + 1 = 12

→ 12 × 2 + 2 = 26

→ 26 × 3 + 3 = 81

The next number

→ 81 × 4 + 4 = 328

Hence the required term
of given sequence is

**328**.**15. A)**The pattern of given sequence can be evaluated as:

→ 5

→ 5 × 2 + 1 = 11

→ 11 × 2 + 1 = 23

→ 23 × 2 + 1 = 47

Hence, the next number
must be

→ 47 × 2 + 1 = 95

Hence the required term
of given number is

**95**.